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1. INTRODUCTION

A number of papers address the problem of constructing prediction bands for 
multivariate and univariate autoregressive (AR) models (see e.g., Jordà, Marcel-
lino, 2010; Staszewska-Bystrova, 2011, 2013; Staszewska-Bystrova, Winker, 
2013; Wolf, Wunderli, 2015). Joint prediction bands are designed to contain the 
future trajectory of a predicted variable with probability given by the coverage 
level and therefore provide valuable information on the predictive uncertainty. 
The most successful methods of band construction use the bootstrap (Efron, 
1979) to derive the relevant predictive distributions. Bootstrap methods are also 
commonly used for this class of models for forming prediction intervals (see i.a. 
Thombs, Schucany, 1990; Masarotto, 1990; Breidt et al., 1995; Grigoletto, 1998; 
Kim, 2001; Clements, Kim, 2007). 

The methods of building joint bands, which have been proposed, lead to ob-
taining prediction regions which differ with respect to the estimated coverage 
levels and widths. Simulation studies reported by Lütkepohl et al. (2015a, 
2015b) in the context of constructing confidence bands for impulse responses 
show that the conservative bootstrap Bonferroni bands are quite successful in 
terms of maintaining the nominal coverage probability. However, the estimated 
coverage rates are often larger than the nominal values for these bands.  
Excessive coverage is, in turn, associated with unnecessarily large width of the 
bands. 

The aim of this paper is to refine the basic bootstrap Bonferroni bands in two 
ways: first, by applying higher order Bonferroni-type inequalities (Hoover, 1990, 
see also Glaz, Ravishanker, 1991) and second, by considering imbalanced Bon-
ferroni bands found through optimization. Both refinements should lead to reduc-
tions in the width of the bands. The working of the methods is compared to the 
performance of the sup-t procedure described by Wolf, Wunderli (2015). 
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The proposed methods are applied to persistent AR models containing a lin-
ear trend. The parameters of such models can be estimated using various 
methods. Some standard estimators including the ordinary least squares (OLS) 
or the Yule-Walker estimators are, however, not recommended due to their 
small sample bias (see e.g. Andrews, Chen, 1994). Alternative estimation 
methods for univariate AR models with time trend have been proposed for in-
stance by Andrews, Chen (1994), Kilian (1998) and Roy, Fuller (2001). Clem-
ents, Kim (2007) report that bootstrap prediction intervals for the AR model 
based on the approximately median unbiased Roy-Fuller estimator have the 
best small sample properties. This estimator is therefore applied in the study 
reported below. 

The structure of the paper is as follows. The next section presents the AR 
framework and the estimation method used. In section 3 the bootstrap algorithm 
for obtaining predictive distributions is described and in section 4 the standard 
Bonferroni bands, the proposed refinements and the benchmark sup-t bands are 
discussed. Section 5 presents the Monte Carlo comparison of the methods while 
section 6 concludes. 

 
2. THE MODEL 

 
The model considered in this paper is an AR(p) with intercept and a linear 

time trend (see Box, Jenkins, 1970; Lütkepohl, Krätzing, 2004): 
 
௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵߙ + ௧ିଶݕଶߙ + ⋯ + ௧ି௣ݕ௣ߙ + ௧, (1)ߝ
 

where ߝ௧~iid(0,  .(ଶߪ
 
The model can be reparametrized either as 
 
௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵߛ + ௧ିଵݕ∆ଵߜ + ⋯ + ௧ି௣ାଵݕ∆௣ିଵߜ + ௧, (2)ߝ

 
where ∆ݕ௧ = ௧ݕ − ଵߛ ,௧ିଵݕ = ∑ ௜௣௜ୀଵߙ ଵߙ , = ଵߛ + ௜ߙ ,ଵߜ = ௜ߜ − ௜ିଵ for 2ߜ ≤ ݅ ≤ ݌ − 1 
and ߙ௣ =  ௣ିଵ or asߜ−
 

௧ݕ  = ߤ + ݐߚ + ௧ିଵݕଵିߛ + ௧ିଵݕଵܵߠ + ⋯ + ௧ି௣ାଵݕ௣ିଵܵߠ + ௧, (3)ߝ
 

where ܵݕ௧ = ௧ݕ + ଵିߛ ,௧ିଵݕ = ∑ (−1)௜ାଵߙ௜௣௜ୀଵ ଵߙ , = ଵିߛ + ௜ߙ ,ଵߠ = ௜ߠ + ௜ିଵ for 2ߠ ≤݅ ≤ ݌ − 1 and ߙ௣ =  ଵ in (2) describes the persistence ofߛ ௣ିଵ. The parameterߠ
the AR process. In what follows it is assumed to belong to the interval (−1,1). 

 
Given the pre-sample values ିݕ௣ାଵ, … , ,ଵݕ ଴ and the sample valuesݕ … ,  the ,்ݕ

parameters of model (2) can be estimated using the method proposed by Roy, 
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Fuller (2001). The Roy-Fuller (RF) estimator of ߛଵ is approximately unbiased and 
its mean squared error is smaller than that of the ordinary least squares estima-
tor for time series with a root near 1. The estimator is defined as 

 
ොଵோிߛ  = min(ߛ෤ଵ,1), (4)
 

where ߛ෤ଵ = ሶଵߛ + )௣ܥ] ሶ߬ଵ) + )௣ିܥ ሶ߬ିଵ)]ߪሶଵ, ߛሶଵ is the least squares estimator of the 
parameter of ݕො௧ିଵ in the model where ݕො௧ is regressed on ݕො௧ିଵ, ,ො௧ିଵݕ∆ … ,  ௧ on the constantݕ ො௧ denotes the least squares residual from the regression ofݕ ,ො௧ି௣ାଵݕ∆
and linear trend t and ߪሶଵ is the standard error of ߛሶଵ. The functions ܥ௣( ሶ߬ଵ) and ିܥ௣( ሶ߬ିଵ) are based respectively on the unit root statistic 

 
 ሶ߬ଵ = ሶଵߛ − ሶଵߪ1 , (5)

 
and the negative unit-root statistic 

 
 ሶ߬ିଵ = ሶିଵߛ + ሶିଵߪ1 , (6)

 
where ߛሶିଵ and ߪሶିଵ are the least squares estimator of the coefficient of ݕො௧ିଵ in the 
model where ݕො௧ is regressed on ݕො௧ିଵ, ,ො௧ିଵݕܵ … , )௣ܥ .ሶିଵߛ ො௧ି௣ାଵ and the standard error ofݕܵ ሶ߬ଵ) has the form3 

)௣ܥ  ሶ߬ଵ) = −߬௠௘ௗ + ்݀( ሶ߬ଵ − ߬௠௘ௗ), ሶ߬ଵ > ߬௠௘ௗ,= ௣(ܶିଵܫ ሶ߬ଵ) − 3[ ሶ߬ଵ + ݇( ሶ߬ଵ − ,ଵି[(ܭ ܭ < ሶ߬ଵ ≤ ߬௠௘ௗ,= ௣(ܶିଵܫ ሶ߬ଵ) − 3[ ሶ߬ଵ]ିଵ, −ඨ3ܶܫ௣ < ሶ߬ଵ ≤ ,ܭ
= 0, ሶ߬ଵ ≤ −ඨ3ܶܫ௣ ,

 

 
where ܫ௣ stands for the integer part of ଵଶ ݌) + 1), ߬௠௘ௗ is the median of the limiting 
distribution of ሶ߬ଵ under the null, ݇ = ൣ3ܶ − ߬௠௘ௗଶ ൫ܫ௣ + ܶ൯൧[߬௠௘ௗ(߬௠௘ௗ − ௣ܫ)(ܭ ++ܶ)]ିଵ. The constants K and ்݀ are set, following Roy, Fuller (2001), to –5 and 
0.29, respectively. The expression for ିܥ௣( ሶ߬ିଵ) is as follows 
                      

3 Apart from the paper by Roy, Fuller (2001) see also the errata available at Anindya Roy’s 
webpage. 
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)௣ିܥ  ሶ߬ିଵ) = 0, ሶ߬ିଵ ≥ ඥ݇ିଵ,= ൬ඌ݌ + 12 ඐ + ଶ௣൰ܫ ܶିଵ ሶ߬ିଵ − ሶ߬ିଵିଵ, ܭ ≤ ሶ߬ିଵ < ඥ݇ିଵ,= ்ܽ + ்ܾ( ሶ߬ିଵ + ,(ܭ ሶ߬ିଵ < ,ܭ  

 
where ܫଶ௣ is equal to 0 if ݌ is even and is given by 3 if ݌ is odd, ۂݍہ stands for the 

greatest integer less than or equal to ݍ, ݇ିଵ = ቀቔ௣ାଵଶ ቕ + ଶ௣ቁିଵܫ ܶ, ்ܽ = ∗௣ିܥ ்ܾ ,(ܭ−) = ௣∗ᇱିܥ ∗௣ିܥ and ,(ܭ−) ( ሶ߬ିଵ) = ൫݌)ہ + ۂ2/(1 + ଶ௣൯ܶିଵܫ ሶ߬ିଵ − ሶ߬ିଵିଵ. 
 
Given an estimate ߛොଵோி, the parameters ߤ, ,ߚ ,ଵߜ … ,  ௣ିଵ can be estimated fromߜ

the regression of ݕ௧ − ,௧ିଵݕ௧ିଵ on the constant, trend and lagged differences Δݕොଵோிߛ … , Δݕ௧ି௣ାଵ, producing ̂ߤோி, ,መோிߚ ,መଵோிߜ … , መ௣ିଵோிߜ . The only exception arises if ߛොଵோி = 1 when the parameter on trend is restricted to 0. In the next step, esti-
mates of ߙଵ, … , ,ොଵோிߙ ௣, denoted byߙ … ,  ො௣ோி, can be obtained. The variance of theߙ
random error ߝ௧ can be estimated using  

 
ොଶߪ  = 1ܶ − ݈ ෍ ௧̂ଶ்ߝ

௧ୀଵ , (7)

 
where ݈ stands for the number of estimated coefficients and  

 
௧̂ߝ  = ௧ݕ − ோிߤ̂ − ݐመோிߚ − ௧ିଵݕොଵோிߙ − ⋯ − ௧ି௣. (8)ݕො௣ோிߙ
 
The point forecasts ݕො(ℎ) for 1, … ,  and the corresponding prediction standard ܪ

errors ߪො(ℎ) may be calculated according to 
 
ො(ℎ)ݕ  = ோிߤ̂ + ܶ)መோிߚ + ℎ) + ො(ℎݕොଵோிߙ − 1) + ⋯ + ො(ℎݕො௣ோிߙ − (9) ,(݌
 

where ݕො(݆) = ݆ ା௝ for்ݕ ≤ 0, 
 

and 
 
ො(ℎ)ߪ  = ෠଴ଶߠොଶටߪ + ⋯ + ෠௛ିଵଶߠ , (10)

 
where ߠ෠௝ = ∑ ෠௝ି௜௝௜ୀଵߠ ݆ ො௜ோி forߙ = 1,2, … , ℎ − 1 with ߙො௜ோி = 0 for ݅ > ෠଴ߠ and ݌ = 1. 

 
In what follows the main interest lies in using the Roy-Fuller estimator and the 

bootstrap method for constructing prediction bands which should cover the fu-
ture H-dimensional path of realizations (ܪ)ݕ = ,ାଵ்ݕ) … , -ାு)′ which a preas்ݕ
signed probability. 
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3. THE BOOTSTRAP ALGORITHM 

 
Predictive distributions and estimates of standardized prediction errors are ob-

tained using the residual bootstrap procedure. Calculations involve a number of 
steps: 
1) The parameters of model (1) are estimated using the Roy-Fuller method and 

the corresponding residuals are computed. The residuals from (8) are inflated 

using a factor of ට ்்ି௟ (see e.g. Stine, 1987) and denoted by ߝ௧̂∗. 
2) A sample of pseudo-data of size ܶ is generated from the bootstrap data gen-

erating process of the form (see Clements, Kim, 2007; Fresoli et al., 2015): 

 
∗௧ݕ  = ோிߤ̂ + ݐመோிߚ + ∗௧ିଵݕොଵோிߙ + ⋯ + ∗௧ି௣ݕො௣ோிߙ + ௧∗, (11)ߝ

 
where actual observations ିݕ௣ାଵ, … , ∗௣ାଵିݕ ଴ are used as pre-sample valuesݕ , … ,  .∗௧̂ߝ ௧∗ is drawn randomly from the rescaled residual seriesߝ ଴∗ andݕ

3) The pseudo-data set is used to re-estimate the parameters of model (1) pro-
ducing ̂ߤோி∗, ,∗መோிߚ ,∗ොଵோிߙ … , -ො∗(ℎ) and preݕ ො௣ோி∗ and also to compute forecastsߙ
diction standard errors ߪො∗(ℎ) as in (9) and (10) but with ̂ߤோி, ,መோிߚ ,ොଵோிߙ … ,  ො௣ோிߙ
replaced by ̂ߤோி∗, ,∗መோிߚ ,∗ොଵோிߙ … ,  .∗ො௣ோிߙ

4) Bootstrap future trajectory for horizon (1)∗ݕ) ,ܪ, … , -is generated us ′((ܪ)∗ݕ
ing: 

 
(ℎ)∗ݕ  = ∗ோிߤ̂ + ܶ)∗መோிߚ + ℎ) + ℎ)∗ݕ∗ොଵோிߙ − 1) + ⋯ ℎ)∗ݕ∗ො௣ோிߙ+ + − (݌ + ௛∗, (12)ߝ

 
where ℎ = 1, … , (݅)∗ݕ ,ܪ = ݅ ା௜ for்ݕ ≤ 0 and ߝ௛∗ is drawn randomly from the 
series ߝ௧̂∗. 

5) Bootstrap vector of standardized prediction errors መܵ∗(ܪ) = ,(1)∗ݏ̂) … ,  ′((ܪ)∗ݏ̂
is evaluated by generating ݕ௧∗ for ܶ + 1 ≤ ݐ ≤ ܶ +  analogously as in (11) but ܪ
with initial values given by ି்ݕ௣ାଵ, … , and calculating, for ℎ ்ݕ = 1, … ,  :ܪ

 
(ℎ)∗ݏ̂  = ௬ො∗(௛)ି௬∗(௛)ఙෝ∗(௛) . (13)

 
The procedure in steps (2)–(5) is repeated N times (where N denotes the 

number of iterations in the bootstrap loop), providing N bootstrap replicates of 
the future trajectory of ݕ and the same number of replicates of the vector of 
standardized prediction errors. These values can be used to construct various 
bootstrap prediction bands. 
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4. REFINED BONFERRONI BANDS

Prediction bands can be constructed using Bonferroni’s method. Suppose the 
objective is to construct a (1 − (ߛ × 100% prediction band B for the elements of 
an H-dimensional vector (ܪ)ݕ = ,ାଵ்ݕ) … ,  ାு)′. The Bonferroni inequality்ݕ

(ܪ)ݕ)ܲ ∈ (ܤ ≥ ∑ (1 − ௛)ு௛ୀଵߛ − ܪ) − 1), (14)

where 1 −  ௛ is the coverage probability of the band at horizon ℎ (i.e. computedߛ
with respect to ்ݕା௛), indicates that in order to achieve at least the desired cov-
erage of the band, it can be assumed that ∑ ௛ு௛ୀଵߛ = -The most common ap .ߛ
proach is to set each ߛ௛ to the same value ఊு. The resulting band is constructed

from ቀ1 − ఊுቁ × 100% prediction intervals for each element ்ݕା௛ separately: 

ܤ = ,௅ଵܤ] [௎ଵܤ × ,௅ଶܤ]  [௎ଶܤ × … × ,௅ுܤ] ,[௎ுܤ (15)

where ܤ௅௛ and ܤ௎௛ denote respectively, the ఊଶு and 1 − ఊଶு quantiles of the predic-
tive distribution of ்ݕା௛. 

Given that the actual coverage of the Bonferroni band may easily exceed the 
desired level and the band may, in effect, be excessively wide (see, e.g. Lüt-
kepohl et al., 2015b) it makes sense to try to refine the Bonferroni bands in such 
a way that the actual coverage becomes closer to the nominal level and the 
width of the bands is reduced. 

The first refinement uses higher order Bonferroni-type inequalities of Hoover 
(1990). Glaz, Ravishanker (1991) apply these inequalities to construct prediction 
bands for ARIMA models using the properties of the multivariate normal distribu-
tion. In this paper, the bootstrap distribution of the predictor is considered. The 
condition implied by the Bonferroni-type inequality of order k, for 1 < ݇ ≤ ܪ − 1 
for the band ܤ௞ has the form: 

(ܪ)ݕ)ܲ ∈ (௞ܤ ≥ ∑ ൫1 − ௛,௛ା௞ିଵ൯ߛ − ∑ ൫1 − ௛ାଵ,௛ା௞ିଵ൯ுି௞௛ୀଵுାଵି௞௛ୀଵߛ , (16)

where for 1 ≤ ݉ ≤ ݊ ≤ 1) ,ܪ −  ௠,௡) is the probability that realizations of theߛ
predicted variable observed from horizon m to horizon n is covered by the corre-
sponding stretch of the band, ߛ௠,௠ = ௠ାଵ,௠ߛ ௠ andߛ ≡ 1. 

The band with equal values of ߛ௛ for ℎ = 1, … ,  could be constructed in an ,ܪ
iterative manner by starting from the band derived from Bonferroni’s inequality 
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and reducing the coverage of the intervals in each step by 1/N, where N is the 
number of bootstrap replications (making ߛ௛ larger in each step by 1/N). In each 
iteration it would be checked whether the relevant higher order Bonferroni ine-
quality was observed. This can be achieved by computing the bootstrap cover-
age at single horizons and multiple horizons and evaluating the Bonferroni-type 
inequality of order ݇ of interest. The final values of ߛ௛ would be the largest val-
ues for which the inequality was met. The larger the value of ݇, the less con-
servative the resulting band. 

The second refinement of the basic Bonferroni band aims at finding such ߛ௛ 
for ℎ = 1, … , ,ܪ ∑ ௛ߛ = ு௛ୀଵߛ  that the width of the band is as small as possible. 
The resulting Bonferroni band can be described as imbalanced (see e.g. Wolf, 
Wunderli, 2015).  

Optimization is done using threshold accepting (TA) belonging to a class of 
refined local search methods. The procedure was proposed by Dueck, Scheuer 
(1990) and applied to the problem of constructing prediction bands e.g. by 
Staszewska-Bystrova, Winker (2013) and Grabowski et al. (2017).  

The objective function which is minimized is the width of the band: 
 
(஺்ܤ)ܹ  = ∑ ௎௛்஺ܤ) − ௅௛்஺)ு௛ୀଵܤ , (17)
 

where ்ܤ஺ is the Bonferroni band obtained using threshold accepting. The de-
tailed steps of the optimization procedure are presented in algorithm 1.  

 
The algorithm is initialized (step 1) by considering as the starting solution ܤ௖, 

the basic Bonferroni band B and evaluating the objective function for this band. 
The number of search steps (݊௜௧௘௥) and the threshold sequence (ݐଵ, … ,  ௡೔೟೐ೝ) ofݐ
the corresponding length are also set. The threshold values should be positive 
and decreasing. Then ݊௜௧௘௥ iterations are performed. In each iteration ݅, a new 
solution (prediction band) belonging to the neighborhood of the current solution 
is considered. The neighboring band is created randomly by modifying the width 
of the currently considered band in two points in such a way that the constraint ∑ ௛ߛ = ு௛ୀଵߛ  is not violated. To achieve this, two values ℎଵ and ℎଶ are randomly 
selected from the set {1, … ,  ௛మߛ ௛భ andߛ and the corresponding values (step 2) {ܪ
are changed (steps 3–5). First, ߛ௛భ is made smaller by subtracting a random frac-
tion of its current value (݂). Second, ߛ௛మ is enlarged by ݂. Then, the width of the 
new band ܤ௡ is computed and compared to the width of the current band (step 6). 
If the difference is smaller than the threshold value for iteration ݅, then the solu-
tion is accepted as the current solution (step 7). The algorithm continues until ݊௜௧௘௥ search steps are completed. The band with the smallest value of the objec-
tive function found throughout the search steps, denoted by ்ܤ஺ is presented as 
the final solution. 



162 Przegląd Statystyczny, tom LXV, zeszyt 2, 2018 
 

Algorithm 1.  
Threshold accepting procedure 

1. Obtain initial solution ܤ௖ and compute ܹ(ܤ௖ ). Set the value of ݊௜௧௘௥ and ݐଵ, … ,  ௡೔೟೐ೝݐ
2. for ݅ = 1, … , ݊௜௧௘௥ do 
3. Randomly select two integers: ℎଵ and ℎଶ from the set {1, … ,  {ܪ
4. Randomly select p from the interval (0,1) and compute ݂ = ௛భcߛ݌  
5. Obtain new solution ܤ௡ by setting ߛ௛భ௡ = ௛భ௖ߛ − ݂  and ߛ௛మ௡ = ௛మ௖ߛ + ݂ 
6. Calculate ∆= (௡ܤ)ܹ −  (௖ܤ)ܹ
7. if ∆< ௖ܤ ௜ thenݐ =  ௡ܤ
8. end for 

 
The proposed Bonferroni-type bands are compared to the sup-t method de-

scribed by Wolf, Wunderli (2015). The benchmark procedure has some optimali-
ty properties (e.g smaller width) as compared to the traditional Bonferroni algo-
rithm in large samples (see Montiel Olea, Plagborg-Møller, 2017). The sup-t 
bands are computed by finding the largest value in each of the ܰ vectors | መܵ∗(ܪ)| 
and obtaining ݀ଵିఈ equal to the 1 −  quantile of these maxima. In the next step ߙ
the band is formed as 

 
ො(1)ݕ]  ± ݀ଵିఈߪො(1)] × … × (ܪ)ොݕ] ± ݀ଵିఈߪො(ܪ)]. (18)
 

5. A SIMULATION STUDY 
 
Small-sample properties of the bands were studied using Monte Carlo simula-

tions. A number of data generating processes (DGPs) were investigated. The 
first set of DGPs (denoted by DGP.A), considered also by Clements, Kim (2007), 
had the form: 

 
௧ݕ  = 1 + (1 − ݐ(ߙ + ௧ିଵݕߙ + ௧,   (19)ߝ
 

where ߙ ∈ {0.5,0.9,0.95}. Higher values of ߙ correspond to larger degree of per-
sistence of the AR process. Three different distributions of the errors, ߝ௧, were 
considered for DGP.A: a standard normal distribution (ܰ(0,1)), a chi-square 
distribution with 4 degrees of freedom, centered to have mean 0 and standard-
ized to have variance 1 and a t-distribution with 4 degrees of freedom standard-
ized to have variance equal to 1. 

 
More complex DGPs (DGP.B), corresponding to AR(2) were given by: 
 
௧ݕ  = 1 + (1.85 − ݐ(ଵߙ + ௧ିଵݕଵߙ − ௧ିଶݕ0.85 + ௧~ܰ(0,1), (20)ߝ    ,௧ߝ
 

where ߙଵ ∈ {1.35,1.75,1.8}. For these processes ߛଵ = ଵߙ − 0.85 and so the per-
sistence also grows as the value of ߙଵ increases. 
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The other settings of the Monte Carlo experiments were as follows. The num-
ber of Monte Carlo replications M was set to 1000 and the number of iterations 
in the bootstrap procedure N was equal to 2000.4 In each Monte Carlo iteration, 
parameters of an AR model with a constant and trend were estimated. The lag 
order was selected using Akaike’s information criterion (AIC) allowing for up to 
8 lags. The same number of lags was used for the models estimated in the 
bootstrap procedure. The sample size T and the forecast horizon H belonged 
respectively to the following sets: ܶ ∈ {100, 400} and ܪ ∈ {4, 8, 12}. The nominal 
coverage rate of the bands was given by 0.9.  

Further parameter settings corresponded to specific methods of constructing 
bands. The value of ݇ for the procedure based on higher order Bonferroni’s ine-
quality was equal to 2, 3 or 4. Since the combination ݇ = 4 and ܪ = 4 is not 
feasible due to the condition ݇ ≤ ܪ − 1, the results were not obtained for these 
cases and the corresponding entries in tables are given as NA. TA optimization 
was performed for ݊௜௧௘௥ = 500000 and the threshold sequence defined as  ݐ௜ = ௡೔೟೐ೝି௜௡೔೟೐ೝ × 0.05  for ݅ = 1, … , ݊௜௡௧௘௥. 

Two properties of prediction bands were evaluated in the simulations: mean 
coverage rates and average width. In order to evaluate the coverage probabili-
ties, 1000 future trajectories of length H (each computed conditionally on the last 
p values from the generated sample) were obtained from the DGPs. Then, 
in every Monte Carlo replication the proportions of trajectories lying entirely with-
in the alternative prediction bands were computed. Mean coverage rates were 
obtained as averages of these proportions over M replications. To provide 
a measure of width of the bands, sum of differences between the upper and 
lower bounds were calculated for ℎ = 1 , … ,  and divided by H. Average values ܪ
for M Monte Carlo iterations are reported. 

The results of all experiments are presented in tables 1–6 and tables A1–A6 
from the Appendix. Tables 1–3 and 4–6 contain results obtained respectively for 
DGP.A with normal errors and DGP.B with alternative parameter values. 
In tables A1–A3 and A4–A6 estimated coverage rates and width measures are 
presented for DGP.A with chi-square distributed and t-distributed errors. Quanti-
ties without parentheses correspond to the estimated coverage probabilities, 
while values in parentheses indicate average width of the bands. 

 
Table 1. RESULTS FOR DGP.A WITH ߙ = 0.5 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 89.16 88.55 87.83 87.59 NA 88.58 
 (5.18) (5.07) (5.04) (5.02)  (5.12) 

                      
4 Some experiments showed that using 5000 Monte Carlo and 5000 bootstrap iterations did not 

change the conclusions significantly. 
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Table 1. RESULTS FOR DGP.A WITH ߙ = 0.5 AND NORMAL ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ (dok.) 

8 88.67 88.27 86.93 86.68 86.55 87.90 
 (6.01) (5.87) (5.82) (5.80) (5.79) (5.93) 

12 88.06 88.09 86.22 85.92 85.79 87.20 
ࢀ (6.36) (6.22) (6.23) (6.26) (6.31) (6.45)  = ૝૙૙ 

4 90.51 89.68 89.35 89.15 NA 89.91 
 (5.00) (4.89) (4.89) (4.87)  (4.95) 

8 90.40 89.68 88.86 88.68 88.59 89.53 
 (5.72) (5.61) (5.58) (5.56) (5.55) (5.66) 

12 90.07 89.59 88.42 88.29 88.21 89.00 
 (6.10) (5.99) (5.95) (5.94) (5.93) (6.02) 

 
The Monte Carlo results for the proposed versions of the Bonferroni band can 

be summarized as follows. While all the refinements work in the expected way 
and bring down the average width of the prediction bands as compared to the 
Bonferroni band, the size of the reduction differs between methods and depends 
on the specific features of the DGP and the sample size. It has also varying im-
pact on the estimated coverage probabilities.  

A general observation is that ்ܤ஺ is almost always wider than the widest of 
the ܤ௞ bands, i.e. ܤଶ. The three versions of the bands based on higher order 
Bonferroni-type inequalities do not differ much in terms of width. Given that ܤଶ is 
considerably more aggressive than the Bonferroni band and that further small 
reductions in width as implied by ܤଷ and ܤସ tend to impair the coverage proba-
bilities of these bands, ܤଶ might be preferred over the remaining ܤ௞ methods. 
The length of the forecast horizon has an expected impact on the width of the 
prediction bands for all the methods, i.e. the width grows as ܪ increases, how-
ever it does not influence the relative ordering of the Bonferroni-type procedures 
for band construction.  

 
Table 2. RESULTS FOR DGP.A WITH ߙ = 0.9 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 91.36 
(6.93) 

89.03 
(6.46) 

88.57 
(6.43) 

88.15 
(6.37) 

NA 90.91 
(6.80) 

8 91.77 
(9.90) 

88.59 
(8.96) 

88.13 
(8.94) 

87.46 
(8.81) 

87.18 
(8.76) 

91.46 
(9.69) 

12 91.74 
(12.16) 

88.08 
(10.85) 

87.84 
(10.84) 

12.20 
(10.66) 

86.72 
(10.58) 

91.51 
(11.90) 
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Table 2. RESULTS FOR DGP.A WITH ߙ = 0.9 AND NORMAL ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૝૙૙ 

4 92.32 
(6.43) 

89.77 
(6.02) 

89.71 
(6.05) 

89.34 
(6.00) 

NA 91.88 
(6.34) 

8 93.28 
(8.71) 

89.81 
(7.97) 

89.92 
(8.06) 

89.30 
(7.97) 

89.07 
(7.93) 

92.88 
(8.57) 

12 93.66 
(10.20) 

89.81 
(9.21) 

90.08 
(9.40) 

89.41 
(9.28) 

89.10 
(9.23) 

93.26 
(10.03) 

 

 
Table 3. RESULTS FOR DGP.A WITH ߙ = 0.95 AND NORMAL ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 91.54 
(7.14) 

89.04 
(6.62) 

88.62 
(6.59) 

88.18 
(6.52) 

NA 91.05 
(7.00) 

8 92.06 
(10.57) 

88.47 
(9.47) 

88.19 
(9.42) 

87.48 
(9.28) 

87.19 
(9.22) 

91.72 
(10.33) 

12 91.99 
(13.32) 

87.70 
(11.76) 

87.82 
(11.69) 

87.00 
(11.48) 

86.61 
(11.39) 

91.73 
ࢀ (13.01) = ૝૙૙ 

4 92.63 
(6.73) 

89.81 
(6.24) 

89.85 
(6.29) 

89.44 
(6.23) 

NA 92.24 
(6.63) 

8 93.84 
(9.59) 

89.90 
(8.62) 

90.21 
(8.78) 

89.58 
(8.66) 

89.30 
(8.62) 

93.55 
(9.42) 

12 94.41 
(11.73) 

89.93 
(10.33) 

90.55 
(10.64) 

89.81 
(10.48) 

89.47 
(10.42) 

94.16 
(11.51) 

 
A more detailed assessment of all the methods leads to the following observa-

tions. Results obtained for DGP.A with normal errors (tables 1–3) indicate that 
performance of the procedures depends on the persistence of the process that 
generated the data and the available number of observations. These features 
influence the working of the basic Bonferroni band which becomes more con-
servative for more persistent processes and larger samples which in turn brings 
about the need for refinement and also the sup-t method which tends to under-
cover for the smaller sample size, especially if the forecast horizon is long. For ߙ = 0.5 (table 1) the ܤ band is overall best for both sample sizes in terms of the 
estimated coverage probabilities, however for bigger values of ߙ (tables 2–3) 
these probabilities become too large as compared to the nominal rate of 0.9. 
This effect can be observed for both smaller sample size and larger sample size, 
where as expected, it is even more pronounced. In these cases, selected alter-
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native methods may be preferable. In particular, if the number of observations is 
small, ்ܤ஺ bands could be used as they maintain the nominal coverage rate, 
while for larger sample sizes ܤଶ and sup-t bands have the best coverage proper-
ties.5 

 
Table 4. RESULTS FOR DGP.B WITH ߙଵ = 1.35 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 90.41 
(7.68) 

88.62 
(7.29) 

87.27 
(7.15) 

87.19 
(7.14) 

NA 89.78 
(7.54) 

8 89.55 
(10.00) 

88.55 
(9.72) 

86.44 
(9.44) 

86.41 
(9.44) 

86.11 
(9.39) 

88.72 
(9.82) 

12 89.12 
(11.58) 

88.57 
(11.34) 

86.23 
(11.00) 

86.19 
(11.00) 

85.77 
(10.93) 

88.28 
ࢀ (11.37) = ૝૙૙ 

4 92.13 
(7.45) 

89.69 
(6.99) 

89.18 
(6.95) 

89.10 
(6.94) 

NA 91.63 
(7.33) 

8 92.16 
(9.83) 

89.74 
(9.30) 

89.37 
(9.29) 

89.34 
(9.29) 

89.00 
(9.23) 

91.41 
(9.67) 

12 92.10 
(11.39) 

89.74 
(10.80) 

89.50 
(10.84) 

89.47 
(10.83) 

89.10 
(10.76) 

91.30 
(11.20) 

 
Table 5. RESULTS FOR DGP.B WITH ߙଵ = 1.75 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 92.39 
(11.55) 

88.85 
(10.35) 

87.61 
(10.18) 

87.42 
(10.14) 

NA 91.50 
(11.17) 

8 92.53 
(20.13) 

88.21 
(17.63) 

86.09 
(17.23) 

85.87 
(17.15) 

85.78 
(17.13) 

91.98 
(19.51) 

12 92.20 
(25.08) 

87.94 
(21.92) 

85.28 
(21.44) 

85.07 
(21.36) 

84.99 
(21.33) 

91.67 
ࢀ (24.41) = ૝૙૙ 

4 94.02 
(11.15) 

89.80 
(9.85) 

89.49 
(9.83) 

89.31 
(9.79) 

NA 93.45 
(10.83) 

8 94.85 
(18.87) 

89.70 
(16.29) 

89.09 
(16.24) 

88.90 
(16.18) 

88.83 
(16.16) 

94.49 
(18.37) 

12 94.82 
(22.90) 

89.62 
(19.91) 

88.85 
(19.87) 

88.70 
(19.81) 

88.64 
(19.79) 

94.35 
(22.38) 

                      
5 Some additional simulation results obtained for DGP.A with ߙ = 0.9 indicate that ்ܤ஺ bands 

might be considered as superior to ܤଶ and sup-t bands for sample sizes smaller than 130, where the 
mean coverage of the latter bands falls below 0.89 for longer forecast horizons. 
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Table 6. RESULTS FOR DGP.B WITH ߙଵ = 1.8 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 92.63 
(12.28) 

88.82 
(10.89) 

87.65 
(10.73) 

87.46 
(10.69) 

NA 91.64 
(11.84) 

8 93.19 
(24.11) 

87.97 
(20.55) 

86.26 
(20.19) 

85.97 
(20.07) 

85.85 
(20.03) 

92.54 
(23.23) 

12 92.96 
(33.44) 

87.22 
(28.06) 

85.04 
(27.58) 

84.76 
(27.44) 

84.65 
(27.38) 

92.43 
ࢀ (32.35) = ૝૙૙ 

4 94.19 
(11.80) 

89.81 
(10.35) 

89.52 
(10.35) 

89.33 
(10.30) 

NA 93.56 
(11.43) 

8 95.34 
(22.44) 

89.75 
(18.94) 

89.26 
(18.96) 

89.01 
(18.86) 

88.92 
(18.83) 

95.03 
(21.74) 

12 95.60 
(29.94) 

89.66 
(25.06) 

89.03 
(25.13) 

88.80 
(25.02) 

88.71 
(24.97) 

95.29 
(29.11) 

 
Conclusions from the results for DGP.B (tables 3–6) are similar as those for 

DGP.A. Refined and the sup-t methods are most useful in larger samples and 
for predicting persistent processes for which the Bonferroni band tends to be too 
wide and have excessive coverage probability. The largest gains can be ob-
tained for larger samples for the sup-t and ܤଶ methods, for which the reduction 
in band width can be considerable (e.g. more than 15% for ߙଵ = 1.8, ܶ = 400 
and ܪ = 12). At the same time the coverage probabilities for these procedures 
are quite close to 0.9, especially in the case of the sup-t method. For prediction 
based on persistent processes and smaller data sets ்ܤ஺ method could be se-
lected. 

As follows from the analysis of tables A1–A6, the findings for normal DGPs 
are to some extent, robust with respect to the distribution of the random errors. 
For more persistent processes with either chi-square errors or t-distributed er-
rors considered in tables A2–A3 and A5–A6, as previously, the ்ܤ஺ procedure 
could be considered as most robust for all values of H for the smaller sample 
size, while sup-t or ܤଶ bands, which have very similar properties, would be the 
natural choice for larger samples. Some new effects can be observed for DGP.A 
with ߙ = 0.5, however. For the process with chi-square innovations (table A1), 
the Bonferroni bands still have the best coverage properties for ܶ = 100, howev-
er there is a new winner for ܶ = 400 given by the ்ܤ஺ procedure. The ்ܤ஺ bands 
do not undercover for any value of H and are narrower as compared to the Bon-
ferroni bands (by construction) and to the sup-t bands. As table A4 reveals, 
a different method, namely the sup-t procedure is most reliable for this less per-
sistent process with fat-tailed distribution of the error terms for both ܶ = 100 and ܶ = 400.  
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6. CONCLUSIONS 
 
Joint prediction bands are needed for forming expectations concerning the fu-

ture trajectory of a variable. The construction of such bands is usually based on 
the bootstrap predictive distribution. One of the classic approaches to build pre-
diction bands rests on the Bonferroni inequality. The drawback of this method is 
that the bands can be too wide and exhibit larger probability content than the 
nominal coverage rate. 

In this study two refinements of the Bonferroni band were considered in the 
context of predicting persistent univariate autoregressive processes. The first 
refinement used higher order Bonferroni-type inequalities, while the second con-
sisted in constructing the band from intervals with unequal coverage rates. The 
proposed bands were compared to the Bonferroni bands and the benchmark 
given by the sup-t procedure in a Monte Carlo study. 

Simulation results indicated that the refined bands were superior to the basic 
Bonferroni bands in a number of scenarios involving quite persistent processes. 
In particular, bands based on the second-order Bonferroni-type inequality 
worked well for relatively large samples where they exhibited similar properties 
as the sup-t bands, while the imbalanced Bonferroni method was preferable for 
smaller sample sizes.  
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APPENDIX 
 

A1.  
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 90.54 
(5.28) 

88.85 
(5.34) 

89.16 
(5.08) 

88.93 
(5.05) 

NA 89.83 
(5.18) 

8 90.09 
(6.23) 

88.07 
(6.63) 

88.43 
(6.01) 

88.18 
(5.98) 

88.05 
(5.96) 

88.99 
(6.10) 

12 89.14 
(6.67) 

87.45 
(7.40) 

87.47 
(6.46) 

87.22 
(6.43) 

87.09 
(6.41) 

88.09 
(6.56) 
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A1. (cont.)  
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND Χ2-DISTRIBUTED ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૝૙૙ 

4 91.45 
(5.01) 

89.73 
(5.15) 

90.19 
(4.86) 

89.97 
(4.84) 

NA 90.86 
(4.93) 

8 90.06 
(6.82) 

89.78 
(6.48) 

88.47 
(6.43) 

88.35 
(6.40) 

88.28 
(6.39) 

90.67 
(5.75) 

12 91.40 
(6.32) 

89.43 
(7.14) 

89.65 
(6.10) 

89.51 
(6.08) 

89.41 
(6.07) 

90.32 
(6.18) 

 
A2.  

Table RESULTS FOR DGP.A WITH ߙ = 0.9 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 92.01 
(6.97) 

89.43 
(6.55) 

89.25 
(6.39) 

88.84 
(6.32) 

NA 91.37 
(6.83) 

8 92.14 
(10.02) 

88.98 
(9.34) 

88.65 
(8.95) 

88.01 
(8.81) 

87.74 
(8.75) 

91.60 
(9.79) 

12 91.87 
(12.27) 

88.57 
(11.37) 

88.18 
(10.87) 

87.49 
(10.68) 

87.15 
(10.59) 

91.44 
ࢀ (12.01) = ૝૙૙ 

4 92.92 
(6.42) 

89.95 
(5.94) 

90.26 
(5.98) 

89.87 
(5.92) 

NA 92.45 
(6.30) 

8 93.89 
(8.78) 

89.93 
(8.15) 

90.48 
(8.05) 

89.92 
(7.95) 

89.68 
(7.91) 

93.39 
(8.62) 

12 94.17 
(10.30) 

89.92 
(9.58) 

90.59 
(9.41) 

89.95 
(9.29) 

89.65 
(9.24) 

93.66 
(10.11) 

 
A3. 

Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND Χ2-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 92.25 
(7.15) 

89.66 
(6.66) 

89.38 
(6.52) 

88.96 
(6.45) 

NA 91.63 
(6.99) 

8 92.46 
(10.62) 

89.03 
(9.76) 

88.69 
(9.38) 

88.04 
(9.23) 

87.75 
(9.17) 

91.94 
(10.36) 

12 92.17 
(13.31) 

88.24 
(12.15) 

88.16 
(11.64) 

87.38 
(11.42) 

87.03 
(11.32) 

91.78 
ࢀ (13.00) = ૝૙૙ 

4 93.25 
(6.71) 

89.98 
(6.13) 

90.37 
(6.21) 

89.95 
(6.15) 

NA 92.77 
(6.59) 

8 94.46 
(9.66) 

89.99 
(8.75) 

90.79 
(8.74) 

90.15 
(8.63) 

89.86 
(8.57) 

94.06 
(9.47) 

12 94.91 
(11.81) 

90.01 
(10.62) 

90.98 
(10.62) 

90.24 
(10.45) 

89.91 
(10.38) 

94.52 
(11.58) 
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A4. 
Table RESULTS FOR DGP.A WITH ߙ = 0.5 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 88.69 
(5.71) 

88.87 
(5.43) 

87.51 
(5.44) 

87.31 
(5.40) 

NA 88.04 
(5.56) 

8 86.77 
(7.03) 

88.00 
(6.76) 

85.58 
(6.82) 

85.43 
(6.79) 

85.34 
(6.78) 

85.58 
(6.78) 

12 84.40 
(7.52) 

87.16 
(7.68) 

83.13 
(7.33) 

82.97 
(7.31) 

82.88 
(7.29) 

83.32 
ࢀ (7.34) = ૝૙૙ 

4 90.68 
(5.47) 

90.03 
(5.25) 

89.38 
(5.22) 

89.21 
(5.19) 

NA 90.12 
(5.37) 

8 90.06 
(6.82) 

89.78 
(6.48) 

88.47 
(6.43) 

88.35 
(6.40) 

88.28 
(6.39) 

89.25 
(6.63) 

12 89.36 
(7.71) 

89.56 
(7.26) 

87.85 
(7.25) 

87.71 
(7.22) 

87.64 
(7.20) 

88.35 
(7.41) 

 
A5. 

Table RESULTS FOR DGP.A WITH ߙ = 0.9 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 91.29 
(7.39) 

89.62 
(6.62) 

88.42 
(6.60) 

88.06 
(6.53) 

NA 90.67 
(7.20) 

8 91.31 
(10.43) 

89.14 
(9.35) 

87.71 
(9.23) 

87.13 
(9.09) 

86.89 
(9.03) 

90.72 
(10.16) 

12 90.81 
(12.58) 

88.56 
(11.35) 

87.08 
(11.10) 

86.39 
(10.92) 

86.09 
(10.83) 

90.42 
ࢀ (12.29) = ૝૙૙ 

4 92.93 
(6.97) 

90.10 
(6.12) 

89.74 
(6.14) 

89.42 
(6.07) 

NA 92.53 
(6.83) 

8 93.67 
(9.93) 

90.19 
(8.35) 

89.82 
(8.48) 

89.32 
(8.35) 

89.11 
(8.30) 

93.10 
(9.65) 

12 93.73 
(11.64) 

90.15 
(9.80) 

89.93 
(10.06) 

89.36 
(9.89) 

89.10 
(9.82) 

93.11 
(11.35) 

 
A6. 

Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND t-DISTRIBUTED ERRORS 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૚૙૙ 

4 91.61 
(7.62) 

89.77 
(6.77) 

88.62 
(6.75) 

88.24 
(6.67) 

NA 90.98 
(7.42) 

8 91.75 
(11.10) 

89.21 
(9.86) 

87.86 
(9.68) 

87.26 
(9.52) 

87.01 
(9.46) 

91.19 
(10.80) 

12 91.30 
(13.71) 

88.41 
(12.25) 

87.24 
(11.91) 

86.46 
(11.68) 

86.11 
(11.58) 

90.90 
(13.38) 
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A6. (cont.) 
Table RESULTS FOR DGP.A WITH ߙ = 0.95 AND t-DISTRIBUTED ERRORS (cont.) 

H B sup-t ܤଶ ܤଷ ܤସ ்ܤ஺ ࢀ = ૝૙૙ 

4 93.25 
(7.29) 

90.11 
(6.32) 

89.81 
(6.35) 

89.47 
(6.28) 

NA 92.88 
(7.14) 

8 94.26 
(10.86) 

90.21 
(8.94) 

90.04 
(9.12) 

89.48 
(8.97) 

89.23 
(8.90) 

93.75 
(10.56) 

12 94.56 
(13.19) 

90.22 
(10.83) 

90.34 
(11.19) 

89.66 
(10.97) 

89.36 
(10.88) 

94.02 
(12.86) 

 
ZMODYFIKOWANE PASMA PREDYJKCYJNE BONFERRONIEGO  

DLA MODELI AUTOREGRESYJNYCH 
 

Streszczenie 
 

Pasma predykcyjne konstruuje się często z użyciem nierówności Bonferroniego. 
Wadą takich pasm może być ich duża rozpiętość i zawyżone prawdopodobieństwo 
zawierania przyszłej trajektorii prognozowanej zmiennej. W artykule zaproponowa-
no dwie poprawki dla metody konstrukcji bootstrapowych pasm predykcyjnych 
Bonferroniego wykorzystujące nierówności wyższego rzędu i procedurę minimali-
zacji szerokości pasma. Metody zastosowano do prognozowania jednowymiaro-
wych procesów autoregresyjnych. Ich właściwości zbadano za pomocą ekspery-
mentów Monte Carlo. Wykazano, że zaproponowane procedury prowadzą, w wiel-
ku przypadkach, do uzyskania stosunkowo wąskich pasm predykcyjnych o odpo-
wiednich prawdopodobieństwach zawierania przyszłej trajektorii zmiennej. 

Słowa kluczowe: pasmo predykcyjne, proces autoregresyjny, nierówność 
Bonferroniego 

 
REFINED BONFERRONI PREDICTION BANDS  

FOR AUTOREGRESSIVE MODELS 
 

Abstract 
 

Joint prediction bands are often constructed using Bonferroni’s inequality. The 
drawback of such bands may be their large width and excessive coverage prob-
ability. The paper proposes two refinements to the basic Bonferroni method of 
constructing bootstrap prediction bands. These are based on higher order ine-
qualities and optimization of the width of the band. The procedures are applied 
to the problem of predicting univariate autoregressive processes. Their proper-
ties are studied by means of Monte Carlo experiments. It is shown that the pro-
posed methods lead, in many scenarios, to obtaining relatively narrow prediction 
bands with desired coverage probabilities. 

Keywords: prediction band, autoregressive process, Bonferroni’s inequality 




